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ABSTRACT
Let § := w: A be the space of bivariate piecewise polynomial functions
’

in Cp, of degree < k, on the mesh A obtained from a uniform square mesh
by drawing in the same diagonal in each square.

de Boor and H8llig have given the following upper bound

* m < m(k) := min{2(k-p), k+1}

for the approximation order m of S.

In this paper, the lower bound

m > m(k) - 2

is demonstrated. This result is close to de Boor and H8llig's conjecture
that m never differs from m{k) by more than 1.

Incidentally, the approximation order of ﬂl A is shown to be 4.
’

AMS (MOS) Subject Classifications: 41A15, 41A63, 41A2S5.
Key Words: B-splines, bivariate, degree of approximation, pp, quasi-
- interpolants, linear functionals, smooth, spline functions.
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SIGNIFICANCE AND EXPLANATION

Univariate splines have been proved quite useful in practice. However,

if one wants to fit a surface, or solve a partial differential equation
nunerically, one would naturally think of using multivariate splines. Here

splines still mean piecewise polynomial functions. In this respect, a basic
AT
question is to ascertain, for a given mesh fﬁr and a family S of splines on
S M 7 ’;
" &, what its optimal approximation order is. This question is challenging

A [l‘\
even for a regular triangular mesh /A,/)as soon as one demands that the
approximating functions have a certain amount of smoothness. The report

records a step toward answering the above question. , -
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APPROXIMATION BY SMOOTH BIVARIATE SPLINES
ON A THREE-DIRECTION MESH

Rong-gqing Jia

1. Introduction

In this paper we study approximation order of smooth bivariate splines on
a three~direction mesh. The work in this respect was initiated by de Boor and
DeVore [BD] and de Boor and H8llig [BH 1,2,3]. Here we follow them and
introduce some notations. Let

A:= U (xeR5; x(1) =n, x(2) =n, or x(2)-x(1) =n} .

neéx
Namely, the mesh A is obtained from a uniform square mesh by drawing in the

same diagonal in each square. Let

P P

* ", T ™,a"C

S :
be the space of bivariate pp (piecewise polynomial) functions in Cp, of
total degree < k, on the mesh A. Also, by 'k we denote the space of
polynomials of total degree <& k. We are interested in the approximation
order of S. The approximation order of S is, by definition, the integer
m for which the following holds: For all sufficiently smooth function f,

aist(f,s,) = o(h™)
while, for some d.-function £,

dist(f,s,) # o(h™ .

Here, the scale (sh) of approximating spaces is generated from S by simple
scaling,

5, = Oh(S)
with

Department of Mathematics, University of Wisconsin, Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(ahf)(x) := f(x/h), all €, x, h .

de Boor and DeVore have given the following lower bound for m (see

[BD)):
m > p+2 in case p < p(k) := [_(2k-2)/3_] .

In contrast, S has approximation order 0 for o > pik).

An upper bound for m has been obtained by de Boor and HBllig (see [BH
3; Theorem 3]:

m < m(k) := min{2(k-p), k+1} .

de Boor and H8llig also show that the approximation order of ";,A is 3
rather than 4 (see [BH 2]). Thus the approximation order of S may differ
from m(k) by 1. Based on those investigations, de Boor and H8llig raised
the following

Conjecture ([BH 3]). The approximation order of S = = never differs
from its upper bound m(k) by more than 1.

In this paper, we shall show that the approximation order of § = ":,A
never differs from m(k) by more than 2. The proof of this result will be

based on a quasi~interpolant scheme. For the record we state the following

Theorem 1. Suppose that B € S with supp B finite. If the map

T:pr» ) p(3)B( -3)

zezz

is one~to-one and onto ﬂn, then

dist(f,s,) = o(h™*1)

for all sufficiently smooth functions f.

The argument in [BH 1; Section 6] essentially gives the proof for Theorem
1. We do not need to repeat the proof here.

To construct an element B € § with the property required by Theorem 1,
we shall emply box splines, which were introduced by [BD] and [BH 1]. 1In

section 2, we develop some preliminary results from univariate B-spline
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ot st Edw Thet Bt et it it L Eunt Shei il sl St S S N T L R AT R T P




theory. In section 3, we elaborate some properties of box splines on the
three-direction mesh A. 1In section 4, we construct an element B € § with
the property required by Theorem 1, and therefore prove our main results. In
section S, we show that the approxim#tion order of ﬂ:'A is 4. This
illustrates that the approximation order of ':,A might be exactly k when
k = 2p+2,

2. Some preliminary results from univariate B-spline theory.

Let t = (ti):. be a knot sequence. Recall that

k=1

l(°-x)’

Mi'k(x) = k[ti'.'.'ti+k

is a normalized B-spline of order k for each i € Z. Also we write
Ny, x{x) o= (g = B3 )M )/ .
If p is a polynomial of degree < k, then

p= ) (ApN .
ieg i i1,k

where Ai is the linear functional defined by

k=1-3  (k=1=3) ()

A, £ = § (=) v (t,)
jx i,k i
with

Vi'k(x) sm (ti+1-x) see ( -x)/(k=1)1

k-1

and t,6 € (ti'

i ) (see [BF]; also {B]). Now suppose t; =i, all ieZ.

ik
Then Ni,k = "i,k and

#1 k(x) = ({41-x) ceo(jit+k=1=x)/(k=-1)1 .
’

\ 1t is easily seen that there exist unique constants at k_1(!.80,1,...,)(-2)
[

such that
k=2
4 - - - Xy - -
0,x'®) zzo 8y mq (241X (24k=2-x)/(k=2) | (1)
Comparing the coefficient of x*“2  on both sides of (1), we obtain
ki2
=0 L, k=1

P W iy N R SR Wt S WA e D g e ) S M M PRI CIPLY VY ST U, S S W VI S, VRPN, Sy

Tev . vl Ry g atii D Al A At W W ET R TR TN TR e




e

- L . b il A et il e ¢ - . « bV _®Tw,
L g A e -—_vv‘v-_q.‘f.'*.f""_'v'-'-" .. V. AR "-\...' R L
'-" A R e e e I e T R T T -

If f is a polynomial of degree <€ k-2, then

p = Z £(IN,
ieg i,k=-1

is also a polynomial of degree <€ k-2. On the one hand,
£(4) = A 4P -

On the other hand,

p= 1 Oy PN,

iexz
Pick Ti € (i+k=-2,i+k=1) and calculate Ai KP as follows:
!
- _yk=1=3 , (k=1-3) (3)
A{ kP j);k() Vi o (re ()
G L T Rt T AL
j<k=1 !
. k=13 (k-2-3) (3)
j<£_1 = = Z 2 k=1Vees, k=T 0P (7))
k-2
k-2 -j,(k=2-3) (3)
=1 a I ¢« v (tp (1))
g Lrk=1 §<k-1 244,k=1" 1 i
k-2
o 3 k-1 Mag, k-1 °
Therefore
) ) i )
f(i)N ket “P = ) (A pIN = ) a - (A pIN
o 1 jeg ek Ak 00 Thk=1 o T, k=10 k
T ) ] 3
= a, . _ E(L+2)N, a, . _ E(LIN, | (+2)
=0 k=1 ies =0 Lok=1 iex 1.k
We have proved
Lemma 1. For any polynomial of degree < k=2
) Lot (L
F(4N, = £ ] a, N (e+2)) .
iez 1ok=1 iez £=0 Lok=1"1,k
~4~
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3. Box splines on _a three~direction mesh.

As defined in [BH 1), the box spline M_ 1is the distribution on o

given by the rule:
n

M.z ¢ [ IETED SRR YERI T2
{e,1] i=1

= (Ei): in R". In our case, m = 2. Let e be the

for some sequence
unit vector along xi-axis (i=1,2), and
d1 = e,' d2 Hd e1*e2, da = e2 .

r+g+t

For positive integers r, s and t, let E = (Ei)1 be the sequence in
‘2 given by
€1 mesem Er = d1' €r+1 mesom Er+g - dz and €:+3+1 meeem Er+s+t = da .

From now we will write "r,s,t instead of M_. Caution! Our notation is
slightly different from [BH 3]. In [BH 3], 4, =e, and 4, = e,+e,. Thus
2 2 3 1772
our “r,s,t is just Hr,t,e in the sense given by {(BH 3).
The smoothness of M!'.'t depends on the direction multiplicities.

From [BH 3] we have
(q) (d=1)
r.8,t e L. ccC

with d = min{r+s,s+t,t+r} - 1.

Now we define
0 r-2 0 8=-2 0 t=-2

B t(xi’xz) - z ese 2 2 see Z z eoe 2

r,s, -
A =0 Ar-! 0 u’ao "s-i'o v1 0 v =0

1 t=-1
(a [ XY a cooy a IEXY.\ x
A1,1 lr_1,r 1 u1,1 u3_1,s-1 v1,1 vt_1,t—1
, (3)
+ +.C. + 00.+ + LN ] [ N ]
A MR SIPA L PSR NPT Pa PR A LR L PSR Y

for (r,s,t) with min{r,s,t} » 1 ,

where a has the meaning determined by (1).
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The reason for introducing B, 5. ¢ will be clear after we prove the
’

8,

following

Q r 8 . . -
17 D (D,+D,)"1 ] , PI(B, o =B =] =0
jez
o o _r t - o -
o 2° oot p(idB, =B, (=) =0
'f jex
- o s t
ill 3° (p,+0,)°0 1 | ) PONB, =B, )=D] =0 .
o jex
y Here, as usual, 3 = (j;,3,) € 2%, x = (x;,x,) € B, D, = 3£~,
-‘ 1
p V.= f-f(eme) (4 = 1,2).
[%2 Proof. By symmetry, 2° and 3° follow from 1°. Thus we only need to
o o
55 prove 1. Suppose
o = o4 .
Br,s,t-1 Z 2 biMr,s,t-1( 1
e iez
:3 Then, by the definition of B, g,t’ ¥ have
i
=) t-2
] Brs,t " ) 2 by zzo al,t-l"r,s,t(w“zez) *
.": iex
D Hence
r s .
Dy (D, +a,)"1 | L P e T B e (D))

jex
2 I
- =Ib I (T L] Ay My g o (emIHIRe )] - M
s 1 jezZ £=0

For any test function ¢, one can easily check that

My oer® = [ M (x)000,x )ax, .

Thus

Lemma 2. For any bivariate polynomial of degree <« r+s+t-2, we have

(o-3+i)}
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t=2

<] (30 49,0 ()1 2 3 toqM,0,e ("It = My o (e-3+0)],
je
t=2
= | E’Z(V 1(7,49,) 5p) () 1 Z az e M (Xp=d HE, 4 2)-M,_ (x,-3,+4,)]16(0,x, )ax,
je

by lLemma 1, since vﬁ(v1+v2)’p has degree < t-2. This completes the proof

of Lemma 2.

4. ggasi-intergglant scheme.

In the following, r, s and t are always integers. Let
I := {(r,s,t) | r+s+t = 2p+4 and 2 < r,s,t < p+i1}

J, = {(r,s,t) | r+s+t = 2p+3 and 2 < r,s8,t < p+1}

N

J., 1= {(r,s,t) | rtg+t = 2p0+3 and < r,s,t < p}

N

K := {(r,s,t) | r+stt = 2p+2 and <r,s,t <p} .
We have
I = {(r,2,t)|r+2+4t=2p+4,24¢r,t<p+1} U {(r,s,t) |r+s+t=2p+4,3<8<p+1,2<r, t<p+1}
= {(p+1,2,p+1)} y {(r,s,t)|r+s+t=2p+4,3<8<p+1,2<r,t<p} U
{(r,s,t) |rte+t=2p+4,3<8<p+1,2<r,t and max{r,t}=p+1}

= {(p+1,2,p+1)} U {(r,s,t) |r+s+t=2p+4,4<3<p+1,2<r,t<p} v

{(zr,s,t) | x+s+t=2p+4,3<s8<p+1,2¢xr,t and max{r,t}=p+1} . (4)
Similarly,
31 = {(r,s,t) |r+stt=2p+3, 3<s<p+1 and 2<r,t<p}u
(5)
{(x,s,t) |r+8+t=2p+3, 2<s<p, 2<r,t and max{r,t} = p+t} ,
and
J, = {(r,s,t) |48+t = 2043, 3 <8< p and 2 < r,t < p} . (6)
Therefore
el 31 = 1340 + IRl =1 . (7)

Here, by |E| we mean the cardinality of the set E.

. - PR T - . R
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In the following we use the convention that the empty sum has value 0.

Now we construct B as follows:

B := ] B - ) B
(r,s,t)er 'St (r,s,t)e7 ris,t
3 3 (8) 1
- B + B .
(r,s,t)EJ2 r.s,t (r,s,t)eK r.8,t
Lemma 3. ) B( -j) = 1.
jex?
Proof. From [BH 1] we have
) Mr,s,t( =1
jes
Then (2) and (3) yield
: )) , B gl 73) =1 .
) jez
Therefore L |

I BO=3) =11l - 13,0 - 13, + 1kl =1 .

jex’

The following lemma plays an essential role in this paper.

lemma 4. For k = 2p+2, B € w: A and
’

p - 2 p(j)B( -j) is a polynomial of degree < deg p

jex’

i for any polynomial of degree < k-1.

Proof. We first show that
1, 9, 2 )
D, D, { z p{j)B( =-j)] is a constant for any (q1,q2) ez
jex’ (9)

with q, > 0, 9, > 0 and q1+q2 = deg p € k-1 .,

PV IR ST S S S S U W G S .0 S AP ‘-A_A._i
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Fix aq and d5- Consider the following index sets:

E, := {(x,s,t) | r> a, and t > qz}
E, := {(r,8,t) | r € q, and t < qz}
E, := {(r,s,t) | r < q, and t> q2}

E, := {(r,8,8) | r> q, and t < q2} .

Then {Ei ;1 =1,2,3,4}) forms a partition of zi. To prove (10) it is

sufficient to show that

9, 9
1_7%2 .
D1 D2 2 p(j;( 2 Br,s,t - Z Br,s,t
jezZ (r,s,t)eInEi (r,s,t)ea1nzi
- ) B + ) B Je=3)
(r,B.t)ernEi T8t (r,s.t)eKnE1 r,8,t

is a constant for each i = 1,2,3 or 4. Thus we have to split our

consideration into the four cases: i = 1,2,3 or 4.

Case i = 1. Then r > dq, and t> qy. We have |
q, g9 q, 9
1. 72 1,72
P, P, § POIM, g, (°7) § % P"j)"r-q1.s.t-a2‘ R
94 9 |
which is a constant, since V1 V2 p is a constant. It follows that
94 92
D, D Z p(3)B (*-3j) 1is a constant for any (r,s,t)
1 72 3 r,s,t
with r > a, and t > q, -
Hence
q, 9
172
p, 0, } p(3) ( ) B - B
1 72 r,s,t : r,s,t
jezz (r,s,t)eInE1 (r,s,t)eJ1nE1
- 2 Br s,t 2 Br 8 t)(.-j)
(r,s,t)eJ,nE, ree (r,s,t)eKnE, M

is a constant.
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Case 1 = 2, 1In this case, r < ag and t < q,e Note that

1
(p+1,2,041) g E, .

This is true, because r < q, and t < q, imply that
r+t < q1+q2 < 2p+1 .

Now (4), (5) and (6) tell us that

) B - ) B - ) B +
(r.s.t)e1nE, *'%'Y  (r,s,6)e7 nE, T'%'%  (r,s,t)er nE T05T
2 172 2"%o
] 8
B = Z (B - B ) +
(r.s.t)eKnE2 TiSet 4 2<r, t<p r,s,t r,s-1,t
r+t=2p+4-s
r<q1,t<q2
T Tl
(B =B ) - (B -B )
s=3 2<r,t r,s,t r,s 1't s=3 2<r,t<p r,s,t r,s 1,t
max{r, t}=p+1 r+t=2p+3-s
r+t=2p+4-s r<q1 't<q2
réq,,t<q,

while

B )(e=3)] =

q, g9
1.2 .
D1 D2 ( 2 2 p(J)(Br,s,t r,s-1,t

jez
g,~r gq,~-t
1 2 r t . . =
p,’ D, {oiDjl ] , POIB, _ (=B, )(=3)]} =0
jex
by Lemma 2. Therefore
q, q
1 72
D1 D2 [ z P3N z Br,s,t - z Br,s,t
jGZZ (r,s,t)eInE2 (r,s,t)eJ1nE2
ST N L BT E TR
(r,s,t)€J,nE, e (r,s,t)€KnE, i

Case i = 3. Then r ¢ qa, and t > qz. We have

-10~
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q, g9 q,”r q q,~r q
1.°2 r_ 1 2 r 1 2
D1 D2 = D1D1 D2 D1(D1-0-D2 D2) D2

BT gq-r-t q,~r-L g.-r q
A 2 -n ' o' Y Jin,”
2=0

q,-r
qq-r=t q,- q,+q,~r-%
LA Z ' (e )(D D, )lD V2
£=0

qqtq,r-t s~1 q,-r

ot} + ) + 1) (11)
2=0 £=q1+q2-r-t+1 2=s

q,~r-% q,r

q.,+q,-r-%
1 72
(=1) | ( .

£ ) (0 +0,) "D, ]

+
Gr't

r 8 r t
D1(D1+Dz) H 1 5

’
- -r- -r +
s=1 q1 r-2 q . 1, q2 r~%

A (-1 ( e )to,+0,) *p, 1 .
£=q1+q2-r-t+1

where the differential operators Hr g and G, . are defined as follows:
[ ’

T q1-r-l
H = ) (-1) (! f )(o +D,, YA
L=g

q1+q2-r'l
D,

qytay-r-t q,-r-2

G 3= T (-1 (

q,-r q1+q2 -r-t-%

2 )(D,+p,) D .

For the third term in (11) we observe that

q,+q,~r-%
UL IS PUIM, _  (+=3))
’

jez?
. q1+q2 r-2
) (v (V,49,) v p) ()M

jez2

0,s-l,t-(q1+q2-r-£)( -3)

is a constant for 2 € [q1+q2-r-t+1,s-1], because

s-£ >0 and t - (q1+q2-r-l) >0 .

-11=

oo - - e e, L N . - .
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Thus we can omit the third term of (11) in the following discussion. Now we

want to prove that

I s - 1}

n ’
jezZ IE3 J1ﬂE3 Jan3 KnE3

r s r t .
+ + + C .-
z )[Hr sD1(D1 D2) Gr,tD102]Br,s,t( 3

is a constant. Let

ve= § pC I- 1 -1 «] so’;(n1+l)2)3lar
sox? InE, J NE, J,nE, KnE,

s't('-j))

’

vi=J p() -3 -7 +) e .ooom NEE I

r,t 12 r,s,
jez2 InE3 J1nE3 J20E3 KnE3

Then we can argque separately for U and V. Interchange s and t in (4),

(5) and (6). We can write down (cf. (10))

= p+1 p+1 o
u Zzp(j)u‘,“",+1 DY DD TB Ly g (0=
jex
Do L1 (o401
+ p(3) H_ D.(D +D ) (B - B Y(e=3)
J r+s=2p+4-t
r<q1,t>q2
p+1 . . (12)
+ - o
2 p(3) g z Hr,sD1(D1+D2) (Br,s,t Br,s,t-1)( 3)
.ez2 t=3 2€r,s
J max{r,s}=p+1
L r+s=2p+4-t
‘ r<q1,t>q2
T p+1 . .
-~ + 1 p3) ] ) H_ D,(D ,+D,)) (B -B Y(e=3) .
. ’2 t=3 2<r, s<p r,s 1 172 r,s,t r,s,t-1
P je
pa r+s8=2p+3-t
;.: r<q1 ’ f:>¢:*[2
3
However, Hp+1,p+1 = 0, because q1 < 2p+1 < (p+1) + (p+1). For the second

term of the above expression, we have




p+1

& r s .
3 T pt3) ¥ ) H_ D_(D +D)) (B -B _g)e=3)
:; .8’2 t=d 3<r, s<p r,s 1 12 r,s,t r,s,t-1
3= r+s=2p+d-t
r“!.‘ ’ t>q2
ol r s
5 = 3 I H_ D (D.+D_ ) [ )} p(3)(B -B Q=] =0
3: ‘ t=4 iKr, 8<p r,8 1 1 2 jezz r,s,t r,s,t-1
- r+g=2p+4-t
r<q1,t>q2

. by Lemma 2. The third and fourth terms of (12) are also zero by the same

argument. Thus U = 0, Similarly we can show V = 0. Therefore

q, q
011022{ I ey - 5 - § + 1 B
jezz 3133 J1033 Jan3 KnE3

r,s,t(o-j)]}
is a constant.

Cage 1 = 4, 1In this case r > a4 and t < q,e and the argument is as
in Case 3.

. So far we have proved statement (9). Now

p- 1 p(3)B(-3)
jex?
is a polynomial of degree < deg p. For (qq,9,) with q, >0, q, 2 0 and

q4tq, = deg p we have

q, g9 q, g9 qQ, qQ
v.'"o.% - I pme-3 = 7,0 % - ] p(3) (9,9, %80
jEIz 3

q, q q, g9
=97 p -1 (v, pme-yy
3

91 92
However, V1 V2 p is a constant. Hence
q, 9,

q, g9
) (v1‘v22p)(j)a(--j) =v,'%%
J

by Lemma 3. Therefore

-13-




9, 9
v1'v22(p - Z p(j)B(*=j)) = 0, for any (q1,q2) with q1>0,q2>0 and q1+q2 = degp .

jex?

This shows that p - 2 p(3)B{*~j) 1is a polynomial of degree < deg p. Thus
jez2

Lemma 4 is proved.
Now we can prove

Theorem 2. The mapping T defined by

T:p=— ) p(§)B(+=3) , pex

jex?

k=1

is one-to-one and onto «

k-1"

Proof. is a linear space of finite dimension, and T is a linear

T-1

mapping from « to by ILemma 4. If p# 0, then deg p » 0. Lemma

k-1 -1

4 tells us that 2 p(3)B(*=-3) has the same degree as p; that is
b

2 p(j)B(*-j) ¥ 0. This shows that T is one-to-one. Since LI is
2
jez

finite-dimensional, T is also onto. The proof of Theorem 2 is complete.
Now combining Theorem 1 and Theorem 2 gives

Theorem 3. If k = 2042 and S =7 then

p
k'A,
aist(f,s,) = o(h¥)

for any sufficiently smooth function f£.

Remark. From the above arguments we see that Theorem 3 remains true for

k > 2p+2.

7 ..

AT

We show in Section 5 that the approximation order of nl A is 4. Thus,
[4

in general, Theorem 3 cannot be improved.

For the general case, we also have

L]

LAY

Theorem 4. If S=7w , and p < p(k) := L(2k=2)/3], then
’

aist(f,s,) = o(n™(k)1=2)

s s

*
3 ‘q:.‘.l. l. l‘ ’

.:: for any sufficiently smooth function f.

'\'"‘L'LA-‘;_';'.;'-l.‘.‘.'L




3 Proof. From [BH 1) we already know
atst(e,s) = on®?) .
If 2k € 3p+4, then
n(k) = 2 € 2(k=p) = 2 = 2k - 2p=-2 € pt2 .,
Hence Theorem 4 holds for 2k <€ 3p+d4. If k > 2p+2, then
m(k) - 2 € k=1 .,
‘ Thus Theorem 4 follows from Theorem 3. Now assume 2k > 3p+5 and k < 2p+2.

) Let

: 0 1= 2p+2=k, k' := k=309, p' := p-20 .

E Then

e p' = p=20 = p=2(2p+2-k) = 2k-3p=~4 > 1 ,

E and

? k' = k=30 = 4k-6p=-6 = 2(2k=-3p-4) + 2 = 2p'+2 .

| Let

:f I' := {(r,s,t)|r+s+t = 2p'+4 and 2 < r,s,t < p'+1}

: 33 1= ((r,s,t)|restt = 2p'+3 and 2 < r,s,t < p'+1}

: Ji := {(r,s,t)|r+s+t = 2p'+3 and 2 < r,s,t < p'}

% K' := {(r,s,t)|r+s+t = 2p'+2 and 2 < r,s,t < p'} .

E Define

. - - -

) ® ((r,-gt)ex' (r,a,E)EJ; (r,-?t)eJé ! (r,s?t)ex')3’+“"+°'t*°
2
.3 Then ; e ':,A' An argument similar to that used for Lemma 4 shows that
: p- 1 p(NBC-1

> jes’

is a polynomial of degree < deg p for any polynomial p with
5 deg p € k'~-1420. However,
! k'=1420 = k=-30-1 + 20 = k-0=1 = 2k=-2p=3 .

Thus the mapping

-15=
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p— I p(3)B(*-3)
jez2

is one-to-one and onto n Now Theorem 1 gives the required result:

2k~2p-3°
For any sufficiently smooth function ¢,

2k=2p-2

dist(f,sh) = O(h ) .

This ends the proof of Theorem 4.

1

S. Approximation order from bivariate C -quartics

In this section we will show that for S = w' and

4,A
23 2
f : X X0 X = (x1,x2) eRrR ,

there exists a positive constant such that
dist(f,sh) > const-h4 .
To this end we shall follow [BH 2] and discuss B-nets in the following.
Given a triangle T with vertices U, V and W, we associate each
point x with its barycentric coordinates, i.e. with (u,v,w) for which
X =uU + W +wWW, and utviw = 1

Any polynomial p of degree € n can be represented by

p= I b ¢
togicmn 13K

with

- n! uiviwk
itjtkt ’

where bijk are uniquely determined by p. This representation gives rise to

’ijk(x) :

a function

b : x (iU+j§V+kW)/n and i+j+k = n .,

196 7 Pigxt *igx T
This function is called the B(ernstein or ezier)-net for p (with respect to

T). (See (BH 2].)

To a given function f e '0 we associate a function bf so that bf

4'A
is defined on
Iy = (w42

-16~
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and bf agrees with the B-net for f on each triangle cf A. Obviously,

bf is well defined. We also call bf the B-net for f with respect to A.
0
Let us now introduce some linear functionals on w4 A Define
’
(m,n) o= i=-1 i - i-1 1 + i + 1
A11 £ : bf(m+ ~2~,n) + bf(m+ 4,n) b (m+ ===,n 2 bf(m G 4) .
(mon), i1 i . LI 1 I 14 d
X12 f : bf(m,n+ 2 ) + bf(m,n+ 4) bf(m- 4,n+ 2 ) bf(m+ rids 4) R
(m,n) - i-1 i-1 i i, _ i=-1 i, _
xi3 bf(m+ =t -z~) + bf(m+ 2 4) bf(m+ < 4)
b_(m+ i + i) i=1,2,3,4 m,n € Z
£ 4In a’’ 163,49} ’ .
Let
m,n .
Aij := {Aij' ) | mnez} , i=1,2,3,4; 5 =1,2,3
and
4 3
A = U (&) A .
i=1 =1 i3

If £ € w; A then be = 0 for any A € A (see [F] and [BH 2]).
14

We extend each A € A to the continuous linear functional AI on C(Rz)
with the aid of the local linear map I which associates f with the unique

0
element If of ”4,A

for f e C(i?), and let Tj be the shift operator f£ v £(-++j).

which agrees with £ on T4 Let T be the mapping

£ +— be

We have the following

Lemma 5. T is a linear mapping and commutes with_any shift Tye je 2.

Proof. It is obvious that T is a linear mapping. To prove the second
statement we first show that I commutes with any Tj- Indeed,
Tj(If)(i) = If(i+3) = £(i+3) for any i eJg, ,
I(ij)(i) = I(f(*+j)) (1) = £(j+i) for any i eJ, .
This shows that TjI = ITj. Nextt.lg have to show that the mapping

N ) 0
g bg ¢ g € “4,A

commutes with any Tj. ILet T be a triangle of A. Then

-17=
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gl,= I b ¢
T prqr=4 pqr pqr
It follows that

g4,y = p+£+r b toqr

Hence the mapping g = bg commutes with any shift. The Lemma is proved.

Corollary. If f € u; and A e A, then lbe ig invariant_ under

translates.
Proof. By lemma 5

5 If) = X(T(ij -£)) .

However, ij -fe LY hence X(T(ij - £)) = 0. This shows that

2
Ablf( +3j) Xbxf for any jex .

X(blf('*j) bl = A(TT

The Corollary is proved.
Now let
1" 21 31 41
12 22 32 42
13 23 33 43
and

N-1 N=-1 4

3
b= 307 T 7 a a®mng with h>0 and N = [1/h] . (13)

h m=0 n=0 i=1 j=1 13743 \/h
Since sh < ker "h' we have
dist(f,sh) > dist(f, ker uh) = Iuhfl/luhl . (14)
By the above Corollary
4 3
2 (0,0)
we=N J T 2 Io, . f for femw, .
h =1 ymq 43 1/h 5
P 4 Land x2x3 we have ¢ f = th Hence
or s X 1%2 1/h . en
4 3
b f = P § Y X:g'o)rf .
i=1 =1

It is easy to verify that

I
. -0 LT -




0
S
afal

-
..
o,

I ¢

et

4 3

z Z Aigpo) If
i=1 j=1
3 1 13 1 1
== by (0,2) = b (0,= DI + (b (T3 = br (= P
2 3 2 33 3 1
- [be(4l4) - be 4' )] + [be(4r4) - be(4o' 4)]

1 1
1,7 - be(O'Z)]

+ [be(1ao) be(0,0)] - [be( 4

31 1
+ Wb (Gig) = b (= g - [b

32 12
If(4'4) - be(- 41 )] .

Let t’ be the triangle with vertices U = (0,0). VvV = (0,1) and

W= (1,1). Then

It follows that

u= 1-x2 ¢ V= XymXy and w = Xy

Hence
- - .‘L.,
xijk (iU + jV + kw)/4 (
and
- __iL__ . i3 - k
’ijk YEIT (1=x,) "x3(x,=x ) .
Thus
{ E b5 _

By Lemma S we have

4
I(f(eme, )| = [
p-

1 0 0
Therefore,
4
b (23 -b (B3 = I(f - f(o- .
pzo qgo (bre(era) = Prelarg ~104g,qup,p = T - Lo I

On the other hand
2 3 2 3 2 2
1 2" x1(x2-1) = x1(3x2 - 3x_+ 1)

(f - f(o-e ))(x1,x ) = x 2

4 3 2 2 3 2 2
= x1 + 2x1(x2-x1) + x1(x2-x1) - x1(1-x2) - x1(x2-x1)(1-x2) + x1(1-x2)

1 1 1 1 1
“%,0,4"2%,1,3%6%,2,2"3%,0,3"72%,1,2%% %,0,2 °*

-19-
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. This yields the following result

3
be(o'Z) -

V= (1,0) and W= (1,1). Then

*14%

5 5%

Moreover, we have

1 1
*=2%,0,3%3%,1,3

It follows that

------------

Now we consider another triangle

us=1- Xe0 V= X

1
4

-
[ Y Y

Sl

Y B

1~ %

3 3 3
f(x1,x2) - f(x1-1,x2) = (2x1-1)x2 = -(1-x1)x2 + (x1-x2)x2 + x

+

’0,0,4 *

be(1,0) - be(0,0) =
bLe(1,3) = b (0,3) =
brf(%’l = Prel- %’%’
bre(Gi) - brel- 349
In conclusion we obtain
3 % a4 Aig'O)If = %3
i=1 =1

«20~-

Ry

P T T T A S T A LI, U ) j
PRPR TP ST WL SR S uy P WGP RPIT WA SN GO S T W T . PGS at w

..nl_.
N

|-
L]

with vertices U = (0,0),

and w = x ?

2

- (1= i - j .k
(1 x1) (x1 xz) x2 .

4
2

o

- Y Y

. (15)




Thus

Iuhfl -1 hsNz > L h3 for h <

3 2 . (16)

FY

Furthermore, we have, for any g € C(Rz),

N-1 N-1 4 3

(m,n)
wg=1 1 Y Y a, A "1a,,4
. hY =0 n=0 i=1 3=1 I I Vh
N=-1
1 1 1 2 1 3 1
= J b (m,- =)=b (m+ —=,- =)+b (m+=,~ <)-b (m+=,~ =)]
4 4
=0 101/hg 4 Io’/hg 4 4 101/hg 4 4 101/hg
N-1
1 1 1 2 1 3 1
- Im (m,N- —)~b (m+ —,N- —)+b (m+ 2,N- <)-b (m+ =,N- -]
4 4 4 I 4 4
=0 101/hg 4 I°1/hg 4 I°1/hg 01/hg
N-1
1 1 1 1 2
+ } [-b (0,n)+b (0,n+ <)=b (- =/n+ 3)+b (= z/n+ )
4 4 4
n=0 101/hg I°1/hg 4 Ic1/hg 4 Io1/hg
(17)
“i' 1 1.1 12
- [-b (N,n)+b {N,n+ =)~b (N=- —,n+ =)+b (N- —,n+ =)] .
- n=0 101/hg I°1/hg 4 Ia1/hg 4 4 I°1/hg 4 4
It is easily seen that
e Ib | € const g
101/hg C
where the const is independent of h. Hence (17) implies that
1
|uhg| € 4N const g o < const h J¢
This shows that
1
W, = 0(;) . (18)

Now (14), (16) and (18) yield the desired result:
dist(f,sh) 2 const h4

for some positive constant and the function £ : x = xix: .
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